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ON SOME RECIPROCAL RELATIONS IN THE THEORY
By L E. ~AREICK

SUMMARY

In the theoru of nonstationary .floux about airfoils, the. . “.

%ndim”allij?’ fiudon kl (~) OJlTagn.w and the ~calter-
nating lift’ )function C(k) of Theodomenharefundamental
significance. TM paper report8 on some interesting
relations of. the nature of Fowier tramform8 that exI”8i
between these fund”om. General probkm8 in iransient
170uw about airfoils may lIe giwm a unijied broad
treatment when the8e function8 are employed. Certain
approximate reau[tscd80are reported which are of notable
simplicity, and an analogy un”thtranm”entelectm”cal$OUW
is drown.

INTRODUCTION

There exist at the present time two significant func-
tions that have been introduced into the two-dimen-
sional potential theory of nonuniform motion of airfoils,
one by ‘Wagner (reference 1) and the other by Theo-
dorsen (reference 2). Wagner’s function concerns the
growth of circulation or Iift about an airfoiI at a small
fied angle of attack start:hg impulsively from rest to a
uniform velocity w. Theodorsen’s function describes the
lift due to circulation about an airfoil osdating ainu-
soidally and moving with uniform velocity o. It is
the object of this paper to note the usefulness of these
functions in handling a wide class of problems in tran-
sient flows about airfoils and to point out certain inter-
esting relations existing between them. These rela-
tions are of the nature of Fourier transforms, which
occur with remarkable abundance in numerous fields of
physics and which are one of the main studies of the
recently popular operationrd-mdcuks methods. A
noknvorthy analogy between transient hydrodynamic
flows and transient electrical flows k also mentioned.

A third interesting function, which concerns the be-
havior of an airfoil upon emkring a gust, has been
introduced by Kiksner in reference 3, which is an
excehnt survey of the status of the problem of non-
stationary flows about airfoils. This function and its
relation to Wagner’s function will also be discussed.

THEORY OF NONSTATIONARY FLOWS

Wagner’s function, &l(s) .—Let the chord of the airfoiI
be 2b and let the sngIe of attack (assure cd small) be a.
AIso let the impukive motion from rest to uniform
velocity v take pIace at the origin, s=O (@g. 1). The
verticaI vekity at the airfoil surface is w=v siua.

OF

Then, based on the

NONSTATIONARY FLOWS

physical assumption that the ve-
locity at the trailing edge is finite for alI time, Wagner
derives for the lift, as a function of 8=rt/b,

~=2rbpvzrk,(8) (1)

The function k,(s) is illustrated in figure 2. IVagner
does not derive an explicit analytic expression for
kl(s) but gives only numericaI values. Kiissner (ref-
erence 3) derives a slovdy convergent expression in
series form for kl (8) that checks ‘Wagner’s values. The
expression is rather long and w-ill not be reproduced
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here. It is of great interest to note that the following
simple expression

kI(8)=1 ‘24+s
(la)

agrees within 2 percent in the entire range 0<8< co.
(Cf. table I.) This expression, whioh maybe regarded
as a fortunate choice of the author, is especkdly good
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FIGIWI2.–The functionM:) d WagnET.

in the range 8 small; it may be reasoned that it repre-
sents the actual physical state more eloskly than the
theoretical solution, since it approaches the steady
condition (s= cu) somewhat more slowly.

It is observed that half the fiaI lift is assumed at
once and that the lift gradufly approaches its asymp-
tote, 2irbpvm,in agreement with the resuIts for stationary
flows.
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The function kl(s) is analogous to what is termed in
electrical-circuit theory the “indicial-admittance func-
tion” A(t), which is the current response of a linear
network w a suddenly applied unit voltage; substitute
lift for current and unit vertical velocity for unit voltage
to complete the analogy.

Theodorsen’s function, @i).-The lift on a~ airfoil
oscillating sinueoidally through a smalI angle of attack
and moving with uniform velocity v is given by the
sum of two parts: (a) A classical noncirculatory par{
and (b) a part due to circulation. This paper is not
concerned with the classical part, which consists of the
virtual inertia terms, the general concepts of which go
back to the time of IGmhoff and Kelvin.

The steady-state part of the lift due to circulation
about an oscillating airfoiI moving with velocity o has
been given by Theodorsen as

L=%rb~C(k)Q (2)
where

Q=w%fU’is the vertical velocity at the three-quarter
chord point 1 in complex form,

and where

Ic=$ where to is the angular frequency.

The parameter k permits the substitution of distance s

~ pIace of time t since wt=$ it=ks. The function

O(JI) is defined as

Hl@
(3)o(k) =H,(a + ~HO(a

where HO~~ and HI(2J are Hankel functions (Bessel
functions of the third kind), or, separated into rea~ and
imaginary parts and expressed in terms of BesseI
functions of the first and second kinds,

C(k) =F(k) +W(k) (4)
where

~(k) = ~1(++ Yo)+ ~1(~1–~0) .,.

(eL+Yo)’+ (YI–JO)’

(?(k) = –
YlY~+e7Jo

(J,+ YJ2+ (Y,–JO)2 ‘-’

These functions are illustrated in two ways in figure 3.
It is important to note that, in the interpretation of

equation (2), C(k) is considered to operate on the
function Q. Thus, suppose the actual vertical velocity
is WO sinks. This quantity must be e..prwed as
I. P. W06’k”. Then the lift is

I. P. %bpvwoC(k)enl
or

(
2~bwJP+@* ti ks+tan-l : )

1It is a remarkablefact that the verticalvelwfty et the thrwquwter chordpoint
deterndnesthe ofrouhtfonforceon the elrfoflIn oscllfatorymotions. The lift due to
efrexdatlonacts at the auequarter chordpdrit. The terms “forwardneutral pofnV
and “rem neutral point” have beenMrodrwd by KISamerto deafgnatethesecbar-
Cmterfst!opotrlts.

The lift thus has the samo frequency as the vertical
velocity and both its magnitude and plme are funct ions
of k.

The analogy with alternating currents in elcctricrtl
networks can be mentioned. The function (?(k) cor-
responds to the complex admittance function for alter-
nating- currents (reciprocal of the mmplox irnpcdanco
function Z(u)). The real and imaginary components
F and G are analogous, respectively, to tho nlternating-
current power and quadrature components; the lift duo
to complex vertical velocity Q corrcsponcis to current
due to corupIex voltage E.
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FIGUEE3.—ThefunctionC(k)-~+tt7 orThocdorseo.

Superposition prinoiple.-Linearity of tho equations
of Wagner permits one to write, in general, for the lift
due to a vertical-velocity function w(.s) (at the threc-
quartkr chord point) suddenIy applied at tho instant
when 8=(),

L
J

—=w(0)kl(s) + o’kl(8—8&&q
2?rb@ (5)

where w(O) is the value of w at s=O. This result can
be derived by replacing the function w(s) by a step
function the envelope of which is w(s) and by going to
the limit. The equation is a well-known mathemnticrd
result and is often employed in electrical-circuit tbcory
(reference 4, p. 68).

Several useful forms of this equation mist, of which
one is

Equation (5) expresses a noteworthy rwdt, sinco it
permits the handling (at least formally or grapbically)
of many problems in transient flows that would other-
wise be quite laborious. A9 an example of its applica-
tion, and as a means of obtaining an interesting re.mdt,
leti ~quation (5a) be applied to tlm vertical-velocity
function of the form w(8) =w&it’.
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.

There results for the lift, when the wrticaI velocity
IO&’ is suddenly applied ats= O,

L
— =u.&(s) +woike*2Tbpv J

‘ICl(s,)d%, (5b)
o

In order to isolate the transient and steady-state parts,
the familiar device of separating the interval O to 8
into an intervaI Oto m minus an intervals to cn is used.

Then, for the steadydate part ody (writing s in
place ofs, in the dehite. inkgral),

L=2zbpuu~oikeU’
J

‘nkl(s)e%ls
o

This equation must agree with Theodomen’s result
(equation (2)), which may be written in this case

L=2zbpmrOC(ii}eu’

Hence it must folIow that

J
C(k) =ik ~“k,(s)e+ds (6)

or, in better mathematimd form,

c(k) –l=ikfo%,(s)-l] e-%s (6a)

It foIIows, for the components of C(k)= F’+it7, that

m

(8)

These equations can be inverted by the properties of
Fourier transforms (reference 4, p. 1S3). Then

m

(lo)

Some approximate resuIts.-The integration ex-
pressed in equation (6) can be performed directIy when

the approximate expression kl(s)=l —~ is employed.

Then the following simpler eqmssions for C(k), F, and
G, which hold within a few percent, are obtained (cf.
Jahnke-Emdej “Tables of Functions,” p. 80): z

C(k) –l~ikeW3i(–4z_k) (6b)

*=C04” ai4k-sin4k ci4k

&co& ci4k+sin4k ~&

The following approtiate result is SISOof interest.
Let the verticaI-veIocity function be of the form
w(s) =WO(l —e-~’) where ~ determines the rate at which
w(s) approaches UIo. Then from (5), using the approxi-
mate expression for kl(s),

i ‘rheerpwssion(ob)maybammfderedthe IImit,aa*rn, of thafunctfon (d eqm
tion (m.)):

C(&s)–l*kcI{*(U(+k)-Eu-(~) fkl~
The tramient term mntaining&apprmck Oas s+..

2rbLm=l–e-7’–27e-c’~8} Y~i(4+s)7–Ei(47)]

Second derivation of equation (6].—The result
expressed in equation (6) can be demonstrated in still
another way, which, essentially, is Kiismer’s treatment.
(Cf. reference 3, p. 42o.) A common artiiice in the
treatment of unit discontinuities is to represent the
unit “jump” function

1(s) =1 for s>O
1(8)=0 for s<O

by the folIowing integral in the compIex k pIane, which
can be evaluated by residue theory:

Here the hook integd means integrate from — co to
+ cu,byp~@ the&@mpokt at the origin byasmaIl
semicircle from below. In effect, a spectrum anaIysis

FIGUEZ4.-Tb hnctbi ki(s) ofHlsi’ner.

of the unit jump function has been made as a limit of
a sum of exponential terms. To each exponential term
of vertical veIocity there corresponds the Iift given by
muhipfication with Theodo~en’s function C(k). Then,s
by addition

kl(s) =&&~mdk

J
mc(k]–~ei,, dk [s>()]

=l+*. -= .

=0 [s<0]

Separating C(k) into F(k) +W(k)
C(–k)=F(k) –W(k), there resuh

and noting that

which check equationa (9) and (10)and hence ako
equations (7) and (8).

Kttssner’s function, k2(s) .—Kiissner has derived a
function k,(s) (fig. 4),which gives the Lift on an airfofi
as it penetrates into a sudden vertical-gust region with-
out change in direction. If the change in vertical

: The Matfon IAwean C’(k)and M) Is mpreswi h the opsratSomIIda M
c7(k)l(@-k t), wham fkb the o~tor d@ and the expmssIonis Intefpmted‘the
Kunct!onC[k\opezatfngon tha tit Jnmpfunction1(#).”

. .
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velocity in the gust region is w (assumed constant), the
change in Iiftws the airfoil leading edge penetrates the
gust region is

L=!klqnnuk,(s) (11)

Note that the function k~(s) is d&ned fors> – 1, and is
O for s<— 1, i. e., before the leading edge has pene-
trated the gust region.

In order to obtain the relation of kz(s) to k,(s), note
that the opmational equivalent of lcz(s) (in the same
Sf31E.ei that C(k)l (8)=kl(s)) is c(k) [~o(k)+L71(k)]
(reference 3, p. 420). This latter function describes
the steady-state lift due to circulation on an airfoil
moving with uniform velocity v and whose vertical
velocity is oscillating sinusoids.lly but progressing in
the form of waves from point to point, i, e., the vertical
velocity is of the form

~@i(wt+zz) = ~ikwz)

where z defines any point of the airfoil measured from
the center.

Then, the following reIations hold, writing u fors+ 1,

c(k) 1(U)=k,(a)

[Jo(k)+iJ,(k)] 1(a)=~(a)=~+$ arc sin (u–l)

+$h- (PI)’- “[O<U<2]

=1 [a>2]

The second relation is given by Nielsen in “Handbuch
der Cyli.nderfunctionen,” page 197. By superposition,
there results for the combined operator

c(k) [J,(k) +iJ,(k)] 1(u),

where

k,(s) =
J

“k,(u–x)s’(x)dx
o

d–
s’(x) =: 2+~ [O<A<2]

=0 [A>2]
Hence,

J k,(”-’)i~~’ ‘0<ff<21 “2)
k,(s) =! “

‘:J%”-’@d’ ‘“>2]

or, exprewed in terms ofs,

The effect of an arbitrary gust function w(a) can be
written directly by superposition (u=g+ 1)

L
— =W(o)kg (u) +Joakg (Ul)glw(a— dial2xb/m (13)

~For 8 correctionto an en’orin etgnthat exfsUfn reference3, p. 4!23,mnenlt refer-
enm 5. The velnesof I@(s)here giventhexeforeneed to be modifI@;the eo+rected
Au* !nduding the apparent-mewet%?t due to ehenge of shape, ere presmtwl in
referemws.

rhe approximate expression k,(s)sl —&a may bo put
-1-

[nto equation (12). Then (cf. table I),

r
kJu)s2 :1:—– 1 [a>2]

JS1 4.(2–.)–COS-’()–.)

(l’b)

+43 R’-’WI
[=<2]

CONCLUDING REMARKS

It has been shown that-the functions C(k) and Itl(g)
are of considerable significance in the theory of non-
stationary flows. To a certain extent, the results arc
formal since many of the analytic properties of thcso
functions lie hidden in their complicated structures.
Further mathematical studies of the function C(k)
when k is a complex variable would appear to be desir-
able, since this function is associated with tlm lift due
to a general damped sinusoidal motion of the airfoil. In
many problems in transient flows, it is therefore of
value to employ the approximate expressions for
C(k), k,(s), and ks(s) given and thus to obtain quickly
a simpler perspective of the problem.
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TABLE I.—VALUES OF kl(s) AND h(s)

-dNw!Y=-I “’(” !“’’)”’””

m

o
0
.tim
.6567
.Mo6
.lMQ3
.7195
.75!32
.7W0
.8LZS
.8325
.848fi
.E&2.6
.S743
.9s21

LOl@l

o
0
.Km
.5536
.Om
:~

.7.330

.77Z5

.mo

.S182

.naa

..sfel

.8372

.9107
L(WKl

o
.am
.408
.508
.031
.Ooa
.m?
.779
.7W
.s22
.8f0
.85s
.s0s
.s77
.934
1.cm

o
.22s
.408

:E
.00
.?3s
.764
.780
.Sfm
.223
.am
.S&2
..S50
.918

1.m

~Valr.mofkl(~)tnkenfromreference 1ml%
1From equation (lit).
$ %kres of hs) ealcolated from equation(12).

\~Ihorn squat on (12b).
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